Home
Class 12
MATHS
The inverse of the function f(x)=(10^(x)...

The inverse of the function `f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the function (10^(x)-10^(-x))/(10^(x)+10^(-x)) is

Find the inverse of the function : y=(10^(x)-10^(-x))/(10^(x)+10^(-x))+1

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))=

If f(x) =(10^(x)-10^(-x))/(10^(x) +10^(-x)) then f^(-1)(x) =

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

The inverse of f(x)=(10^x-10^(-x))/(10^x+10^(-x))=

The inverse of (10^(x)-10^(-x))/(10^(x)+10^(-x)) is :

The domain of (10^(x) +10^(-x))/(10^(x)-10^(-x)) is: