Home
Class 9
MATHS
(dy)/(dx)+3y=e^(-2x)...

(dy)/(dx)+3y=e^(-2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

find general solution (dy)/(dx)+3 y =e^(-2 x)

Find the general solution of the differential equations: (dx)/(dy)+3y=e^(-2x)

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

The solution of (dy)/(dx) = e^(2x-y) + x^(3) e^(-y) is

Solve (dy)/(dx) = e^(2x+3y) .

(dy)/(dx)=(x+e^(2x))/(y)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as Solution of the differential equation (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) is (e^(2y))/(2)=(e^(3x))/(3)+(x^2)/(2)+C Reason (R) : (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) (dy)/(dx)=e^(-2y)(e^(3x)+x^2) separating the variables e^(2y)dy=(e^(3x)+x^2)dx int e^(2y)dy=int(e^(3x)+x^2)dx (e^(2y))/(2)=(e^(3x))/(3)+(x^3)/(3)+C .

Express the following differential equations in the form f(x)dx+g(y)dy = 0 (i) (dy)/(dx) = (2y)/(x) (ii) x+y(dy)/(dx) = 0 (iii) (dy)/(dx) = e^(x-y) + x^(2).e^(-y) (iv) (dy)/(dx) + x^(2) = x^(2)e^(3y)

General solution of (dy)/(dx)=e^(2x-y)+x^(3)e^(-y) is

The solution of the differential equation (dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y) ,is