Home
Class 11
MATHS
" Q."x^(2)+x+(1)/(sqrt(2))=0...

" Q."x^(2)+x+(1)/(sqrt(2))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)+(x)/(sqrt(2))+1=0

Solve the Equation: (i) x^(2)+x+(1)/(sqrt(2))=0 (ii) x^(2)+(x)/(sqrt(2))+1=0 (iii) x^(2)+(x)/(2)+1=0 .

x^(2) + x/sqrt(2)+1=0

x^(2) + x/sqrt(2)+1=0

x^(2) + x/sqrt(2)+1=0

If a,c varepsilon Q and the roots of the equation cx^(2)+(2+sqrt(2))x+2a(1+(1)/(sqrt(2)))=0 are real and distinct,then the roots of the equation x^(2)-2cax+1=0 will be

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

If I=int(sin x+sin^(3)x)/(cos2x)dx=P cos x+Q log|f(x)|+R then (a)P=(1)/(2),Q=-(3)/(4sqrt(2))(b)P=(1)/(4),Q=(1)/(sqrt(2)) (c) f(x)=(sqrt(2)cos x+1)/(sqrt(2)cos x-1)(d)f(x)=(sqrt(2)cos x-1)/(sqrt(2)cos x+1)

(1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0