Home
Class 12
MATHS
If a,b and c are three non-zero vectors ...

If a,b and c are three non-zero vectors such that no two of these are collinear. If the vector a+2b is collinear with c and b+3c is collinear with a(`lamda` being some non-zero scalar), then a+2b+6c is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three non-zero vectors such that no two of these are collinear.If the vector veca + 2 vecb is collinear with vecc and vecb +3 vecc is collinear with veca (lamda being some non-zero scalar), then veca + 2 vecb + 6 vecc equals:

Let veca,vecb, and vecc be three non zero vector such that no two of these are collinear. If the vector veca+2vecb is collinear with vecc and vecb+3vecc is colinear with veca (lamda being some non zero scalar) then veca\+2vecb+6vecc equals (A) lamdaveca (B) lamdavecb (C) lamdavecc (D) 0

Let a, b and c be three non zero vectors, no two of which are collinear. If the vector a + 2b is collinear with c, and b + 3c is collinear with a, then a + 2b + 6c =

If bara,barb and barc be three non-zero vectors, no two of which are collinear. If the vectors bara+2barb is collinear with barc and barb+3barc is collinear with bara , then ( lambda being some non-zero scalar) bara+2barb+6barc is equal to: a) lambdabara b) lambdabarb c) lambdabarc d)0

If bara,barb and barc be there non-zero vectors, no two of which are collinear. If the vectors bara+2barb is collinear with barc and barb+3barc is collinear with a, then ( lambda being some non-zero scalar) bara+2barb+6barc is equal to