Home
Class 11
MATHS
If a=1+i , then a^2 equals A. 1-i B. 2...

If `a=1+i ,` then `a^2` equals
A. `1-i`
B. `2i`
C. `(1+i)(1-i)`
D. `(i-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=1+i, then a^(2) equals 1-i b.2i .(1+i)(1-i) d.(i-1)

If A^3=O ,t h e nI+A+A^2 equals a. I-A b. (I+A^1)^(-1) c. (I-A)^(-1) d. none of these

If A^3=O ,t h e nI+A+A^2 equals a. I-A b. (I+A^1)^(-1) c. (I-A)^(-1) d. none of these

If A^3=O ,t h e nI+A+A^2 equals a. I-A b. (I+A^1)^(-1) c. (I-A)^(-1) d. none of these

If A^(3)=O, then I+A+A^(2) equals I-A b.(I+A^(1))=^(-1) c.(I-A)^(-1) d.none of these

If A^(3) = O , then I + A + A^(2) equals a)I - A b) (I + A^(-1)) c) (I - A)^(-1) d)none of these

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]