Home
Class 12
MATHS
The value of sum(n=1)^1000 int(n-1)^n e^...

The value of `sum_(n=1)^1000 int_(n-1)^n e^(x-[x])dx`, where `[x]` is the greatest integer function, is (A) `(e^1000-1)/1000` (B) `(e-1)/1000` (C) `(e^1000-1)/(e-1)` (D) `1000(e-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^100 int_(n-1)^n e^(x-[x])dx =

sum_(n=1)^(100) int_(n-1)^(n) e^(x-[x])dx=

sum_(n = 1)^(1000) int_(n - 1)^(n) e^(x-[x]) dx , whose [x] is the greatest integer function, is :

The value of int_(0)^(1000) e^(x - [x]) dx (where [.] is the greatest integer function) equals

int_0^1000 e^(x-[x])dx

int_(0)^(1000)e^(x-[x])dx

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

int_(0)^(1000)e^(x-[x])dx=

Evaluate sum_(n=1)^(1000)int_(n-1)^(n)|cos2pix|dx