Home
Class 12
MATHS
If |z| = 1, then the value of (1+z)/(1 +...

If |z| = 1, then the value of `(1+z)/(1 +bar(z))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 then the maximum value of |z+bar(z)|^(2) is

If |z|=1 then the maximum value of |z+bar(z)|^(2) is

Let |z_(1)|=i,i=1,2,3,4 and |16z_(1)z_(2)z_(3)+9z_(1)z_(2)z_(4)+4z_(1)z_(3)z_(4)+z_(2)z_(3)z_(4)|=48 then the value of |(1)/(bar(z)_(1))+(4)/(bar(z)_(2))+(9)/(vec z_(3))+(16)/(bar(z)_(4))|

If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^n is

Let |z_(1)|=1, |z_(2)|=2, |z_(3)|=3 and z_(1)+z_(2)+z_(3)=3+sqrt5i , then the value of Re(z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1))) is equalto (where z_(1), z_(2) and z_(3) are complex numbers)

If (4z_(1))/(9z_(2))+(4bar(z_(1)))/(9bar(z_(2)))=0, then the value of |(z_(1)-z_(2))/(z_(1)+z_(2))| is

If arg(z)=-(pi)/(4) then the value of arg((z^(5)+(bar(z))^(5))/(1+z(bar(z))))^(n) is

If pi/5 and pi/3 are the arguments of bar(z)_(1) and bar(z)_(2), then the value of arg(z_(1))+arg(z_(2)) is

Let z(ne -1) be any complex number such that |z| = 1. Then the imaginary part of (bar(z)(1-z))/(z(1+bar(z))) is : (Here theta = Arg(z))

If z=i-1, then bar(z)=