Home
Class 12
MATHS
Let f(x) = sinax + cosbx be a periodic f...

Let `f(x) = sinax + cosbx` be a periodic function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = sin a x+ cos bx be a periodic function, then

Let f(x)=sin ax+cos bx be a periodic function,then

Let f(x) be a continuous periodic function with period T. Let I= int_(a)^(a+T) f(x)dx . Then

If f(x) is a periodic function with period T, then

Let f(x, y) be a periodic function, satisfying the condition f(x, y) = f(2x+2y, 2y-2x) AA x , y in R and let g(x) be a function defined as g(x)=f(2^(x), 0) Prove that g(x) is a periodic function and find its period

Let f(x)={(-1+sinK_1pix, x is rational), (1+cosK_2pix, x is irrational) :} If f(x) is periodic function, then:

If f(x) = is an odd periodic function with period 2, then f(4) equals

If f(x+10) + f(x+4)= 0 , there f(x) is a periodic function with period