Home
Class 11
MATHS
If A, B, C are the angles of a triangle,...

If A, B, C are the angles of a triangle, then `sin 2A + sin 2B - sin 2C` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are angles of a triangle, then S. T sin 2A -sin 2B + sin 2C=4 CosA sin B CosC

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

In triangle ABC, the value of sin 2A + sin 2B+ sin 2C is equal to

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to