Home
Class 10
MATHS
If 2x=secA and (2)/(x)=tanA, " prove tha...

If `2x=secA and (2)/(x)=tanA, " prove that " (x^(2)-(1)/(x^(2)))=(1)/(4).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x=secA and (2)/(x)=tanA , then the value of 2(x^(2)-(1)/(x^(2))) is equal to

For x>0 Prove that x-(x^(2))/(2)

if sec A=x+(1)/(4x) then prove that sec A+tan A=2x,(1)/(2x)

Prove that |(1,x,x^2),(x^2,1,x),(x,x^2,1)|=(1-x^2) .

If y = tan ^ (- 1) ((3x) / (1-2x ^ (2))), - (1) / (sqrt (2))

Prove that : (secA+1)/(tanA)=(tanA)/(secA-1)

Prove that : (secA+1)/(tanA)=(tanA)/(secA-1)

If x+(1)/(x)=a then x^(4)+(1)/(x^(4)) =a^(4)-4a^(2) +2 prove it.

If sec A = x + 1/(4x) , prove that sec A + tan A = 2x or (1)/(2x)

If tan^(-1)((x^2-y^2)/(x^2+y^2))=a , prove that (dy)/(dx)=x/y((1-tana))/((1+tana)) .