Home
Class 14
MATHS
((3 2/3)^2-(2 1/2)^2)/((4 3/4)^2-(3 1/3)...

`((3 2/3)^2-(2 1/2)^2)/((4 3/4)^2-(3 1/3)^2)-:(3 2/3-2 1/2)/(4 3/4-3 1/3)=?` `(37)/(97)` (b) `(74)/(97)` (c) `1(23)/(74)` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify ((3(2)/(3))^(2)-(2 (1)/(2)))/((4(3)/(4))^(2)-(3(1)/(3))^(2))+(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))

(7(1)/(2)-5(3)/(4))/(3(1)/(2)+?)-:((1)/(2)+1(1)/(4))/(1(1)/(5)+3(1)/(2))=0.6 a) 4(1)/(3)(b)4(1)/(2) (c) 4(2)/(3) (d) None of these

(2^3)^4 = (a) 2^4*3 (b) 2^3*4 (c) (2^4)^3 (d) none of these

The value of 1+(1)/(4xx3)+(1)/(4xx3^(2))+(1)/(4xx3^(3)) is (121)/(108)(b)(3)/(2)(c)(31)/(2) (d) None of these

4 1/3-2 1/3= (a) 2 1/3 (b) 2 (c) 3 1/3 (d) 1/2

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

(1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(1.2)/(1!)+(2.3)/(2!)+(3.4)/(3!)+....=