Home
Class 12
MATHS
sin^(-1)(6x)/(1+9x^(2))=2tan^(-1)3x...

sin^(-1)(6x)/(1+9x^(2))=2tan^(-1)3x

Promotional Banner

Similar Questions

Explore conceptually related problems

If "sin"^(-1)((6x)/(1+9x^2))=2 "tan"^(-1)(ax) , then a=

If cos^(-1)(6x)/(1+9x^2)=-pi/2+tan^(-1)3x , then find the value of xdot

Prove that: i) sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2 ii) cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1 iii) tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3) iv) tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))

Prove that tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))=tan^(-1)2x;|2x|<(1)/(sqrt(3))

Prove that tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))= tan^(-1)2x,|2x| lt (1)/(sqrt(3)) .

If cos^(-1)((6x)/(1+9x^2))=-pi/2+2tan^(-1)3x , then find the value of x

If cos^(-1)((6x)/(1+9x^2))=-pi/2+2tan^(-1)3x , then find the value of xdot

Evaluate : int sin^(-1)((6x)/(1+9x^(2)))dx

If cos^(-1)(6x)/(1+9x^(2))=-(pi)/(2)+tan^(-1)3x, then find the value of x.

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in