Home
Class 12
MATHS
Sometimes functions are defined like f(x...

Sometimes functions are defined like `f(x)=max{sinx,cosx}`, then `f(x)` is splitted like `f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):}` etc.
If `f(x)=max{(1)/(2),sinx}`, then `f(x)=(1)/(2)` is defined when `x in `

Promotional Banner

Similar Questions

Explore conceptually related problems

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

If f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2)) is

Let f(x)=max{sinx,cosx}AA"x"inR then number of critical points of f(x) in (0,2pi) is

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)+pi/2) is

The function f defined by f(x)=(4sinx-2x-xcosx)/(2+cosx),0lexle2pi is :

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to