NCERT TELUGU|Exercise Miscellaneous Exercise on Chapter 10|24 Videos
Similar Questions
Explore conceptually related problems
If sec x + sec^(2) x = 1 then the value of tan^(8) x - tan^(4) x - 2 tan^(2) x +1 will be equal to 0
Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx
If int (4 sec^(2)" x tan x")/(sec^(2) " x + tan"^(2) x)" dx = log " |1 + f(x) | + C then f(x) =
int sec^(2) x tan^(2) x dx=
Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is
Evalute the following integrals int (sec^(2) x)/( ( 1 + tan x )^(3)) dx
Find the solution set of (tan 2x - tan x)/(1+tan 2x tan x) = 1 .
int_(0)^(pi//2) (x sec^(2). x/2 + 2 tan. x/2)dx=
sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=
tan 4x = (4 tan x (1- tan ^(2) x ))/( 1 - 6 tan ^(2) x + tan ^(4) x)