Home
Class 11
MATHS
sec ^(2) 2x =1-tan 2x...

`sec ^(2) 2x =1-tan 2x`

Text Solution

Verified by Experts

The correct Answer is:
`x = (npi)/( 2), or (npi)/(2) + ( npi)/(2) + (3pi)/(8), n in Z`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise MISCELLANEOUS EXAMPLES|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 3.3|25 Videos
  • STRAIGHT LINES

    NCERT TELUGU|Exercise Miscellaneous Exercise on Chapter 10|24 Videos

Similar Questions

Explore conceptually related problems

If sec x + sec^(2) x = 1 then the value of tan^(8) x - tan^(4) x - 2 tan^(2) x +1 will be equal to 0

Evalute the following integrals int (sec^(2) "x tan x")/(sec^(2) x + tan^(2) x) dx

If int (4 sec^(2)" x tan x")/(sec^(2) " x + tan"^(2) x)" dx = log " |1 + f(x) | + C then f(x) =

int sec^(2) x tan^(2) x dx=

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

Evalute the following integrals int (sec^(2) x)/( ( 1 + tan x )^(3)) dx

Find the solution set of (tan 2x - tan x)/(1+tan 2x tan x) = 1 .

int_(0)^(pi//2) (x sec^(2). x/2 + 2 tan. x/2)dx=

sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=

tan 4x = (4 tan x (1- tan ^(2) x ))/( 1 - 6 tan ^(2) x + tan ^(4) x)