Home
Class 12
MATHS
tan((pi)/(4)+(x)/(2))=secx+tanx....

`tan((pi)/(4)+(x)/(2))=secx+tanx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi/4)(sec x)/(secx + tan x)^(2).dx is

int_(0)^(pi)(xtanx dx)/(secx+tanx)

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)

tan^(-1)(secx+tanx)

int_(0)^(pi)(xtanx)/(secx+tanx)dx=

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

Evaluate the following : int_(0)^(pi//4)(sec^(2)x)/(tan^(2)x+4 tanx+1)dx

Evaluate int_0^(pi/4) secx tanx dx