Home
Class 11
MATHS
z inC, के लिए निम्नलिखित को सिद्ध कीजिए ...

`z inC`, के लिए निम्नलिखित को सिद्ध कीजिए -
(i) `(1)/(2)(z+bar(z))=` वास्तविक `(z)` (ii) `(1)/(2i)(z-bar(z))=` अधिकल्पित `(z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i) z= (1-i))bar(z), then

For all z in C, prove that (i) (1)/(2)(z+bar(z))=Re(z), (ii) (1)/(2i)(z-bar(z))=Im(z), (iii) z bar(z)=|z|^(2), (iv) z+bar(z))"is real", (v) (z-bar(z))"is 0 or imaginary".

If (1+i)z=(1-i)bar(z) then z is

if (1+i)z=(1-i)bar(z) then z is

Let z=log_(2)(1+i) then (z+bar(z))+i(z-bar(z))=

Let z_1=2-i ,z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

If z=i-1, then bar(z)=

Let z_1=2-i ,""""z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))