Home
Class 12
MATHS
Using properties of determinants, sho...

Using properties of determinants, show that `|1a a^2-b c1bb^2-c a1cc^2-a b|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Using the properties of determinant, show that : |[1,a+b,a^2+b^2],[1,b+c,b^2+c^2],[1,c+a,c^2+a^2]| = (a-b)(b-c)(c-a)

Using properties of determinant show that: det[[1,a,-bc1,b,-ca1,c,-ab]]=(a-b)(b-c)(c-a)det[[1,b,-ca1,c,-ab]]=(a-b)(b-c)(c-a)