Home
Class 11
MATHS
Prove that :1+2+3++n=(n(n+1))/2...

Prove that :`1+2+3++n=(n(n+1))/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

By the principle of mathematical induction prove that 1+2+3+4+…n= (n(n+1))/2

Prove that (1)/(n+1)=(nC_(1))/(2)-(2(^(n)C_(2)))/(3)+(3(^(n)C_(3)))/(4)-...+(-1)^(n+1)(n(^(n)C_(n)))/(n+1)

Prove that: 1+2+3+n<((2n+1)^(2))/(8) for all n in N.

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that : (2n) ! = 2^n (n!)[1.3.5.... (2n-1)] for all natural numbers n.

Prove that (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Prove that : Prove that (C_(1))/(C_(0))+2.(C_(2))/(C_(1))+3.(C_(3))/(C_(2))+….+n.(C_(n))/(C_(n-1))=(n(n+1))/(2)