Home
Class 12
MATHS
Prove that (i) C(1)+2C(2)+3C(3)+……+nC(...

Prove that (i) `C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n+1)`
(ii) `C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

e_(0)+(C)/(2)+(C_(2))/(3)++(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

p*C_(0)+p^(2)(C_(1))/(2)+p^(3)(C_(2))/(3)+...+p^(n+1)*(C_(n))/(n+1)=((p+1)^(n+1)-1)/(n+1)