Home
Class 12
MATHS
int(x sqrt(x)-1)/(sqrt(x)-1)dx=ax^(2)+bx...

`int(x sqrt(x)-1)/(sqrt(x)-1)dx=ax^(2)+bx^(3/2)+cx+d` then ascending order of a,b,c is

Promotional Banner

Similar Questions

Explore conceptually related problems

(1) int(sqrt(x))/(sqrt(2x+3))dx(2)int(arctan x)dx

int(1)/(sqrt(x^(2)|3x|d1))dx

int(ax+b)sqrt (cx+d)dx

int sqrt(x)(ax^(2)+bx+c)dx

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

int((1)/(sqrt(x))+(2)/(sqrt(x^(2)-1))-(3)/(2x^(2)))dx on (1,oo)

int(x^(4)+x^(2)+1)/(x^(2)+x+1)dx=Ax^(3)+Bx^(2)+Cx+D then A+B+C+D is equal to

If int 1/sqrt(9-16x^(2)) dx = a sin^(-1) (bx) +c , then 4a+3b=

If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k then

int(ax^(-2)+bx^(-1)+c)/(x^(-3))dx=