Home
Class 12
MATHS
If the function f:[1, infty) rarr [1, in...

If the function `f:[1, infty) rarr [1, infty)` is defined by `f(x)=2^(x(x-1))`, then find `f^(-1)(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:[1,infty) to [1, infty) is defined by f(x) =2^(x(x+1)) then f^(-1)(x) =

If f:[1,infty)rarr[2,infty) is defined as f(x)=x+(1/x) then find f^(-1)(x)

If the function f:[1, oo) rarr [ 1,oo) defined by f(x) = 2^(x(x -1)) is invertible, then find f^(-1) (x).

If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=

If f:[1,infty) to [2, infty) , defined by f(x) = x+1/x , then find f^(-1)(x) .

Let f:[4, infty) to [1, infty) be a function defined by f(x) = 5^(x(x-4)) , then f^(-1)(x) is

If f:[0,infty) to R defined by f(x) = x^(2) , then f is

If f:[1,infty) rarr [2,infty) is given by f(x)=x+1/x, " then " f^(-1)(x) equals