Home
Class 11
MATHS
Let z(1)=2-i, z(2)=-2+i. Find the imagin...

Let `z_(1)=2-i, z_(2)=-2+i`. Find the imaginary part of `(1)/(z_(1)bar(z_(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let Z_1=2-I and Z_2 =-2 + i Find the imaginary part of (1)/( Z_1Z_2) solve = sqrt 5x^(2) +x+ sqrt( 5) =0

If z_(1)=1-i,z_(2)=-2+4i, Find the Modulus of Z=(Z_(1)*Z_(2))/(bar(z)_(1))

If z_(1) = 2 - i and z_(2) = -4 + 3i, find the inverse of z_(1)z_(2) and (z_(1))/(z_(2)) .

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

Let z_(1)=2-i,z_(2)=-2+i* Find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) (ii) Im quad ((1)/(z_(1)bar(z)_(1)))

Let z_(1)=2-i, z_(2)= -2+i . Find (i) Re((z_(1)z_(2))/(z_1)) (ii) Im((1)/(z_(1)z_(2))) .

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))