Home
Class 12
MATHS
Show that tan^(-1)1/2+tan^(-1)2/(11)=tan...

Show that `tan^(-1)1/2+tan^(-1)2/(11)=tan^(-1)3/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Prove that tan^(-1). 1/2 +tan^(-1). 2/11 = tan^(-1) . 3/4

Prove that tan^(-1)""(1)/(2)+tan^(-1)""(2)/(11)=tan^(-1)""(3)/(4)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove the following: "tan"^(-1)1/2+"tan"^(-1)2/11="tan"^(-1)3/4

Prove that tan^-1 (1/2)+tan^-1(2/11)=tan^-1(3/4)

Prove that 2(tan^(-1)1/4+tan^(-1)2/9)=tan^(-1)4/3 .