Home
Class 12
MATHS
If cos A=(sinB)/(2 sin C), then triangle...

If `cos A=(sinB)/(2 sin C)`, then `triangleABC` is

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC if cosA=sinB/sinC then the triangle is

In triangleABC , if cosA=sinB-cosC , then the triangle is

If sinA/sinB=sin(A-C)/sin(C-B) then

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

In a triangleABC , if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0 , then prove that triangleABC is an isosceles triangle.

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

Assertion A: In DeltaABC, sum(cos A)/(sin B sin C)=2 Reasin(R):In DeltaABC, sin A +sinB+sin C= 4"cos"A/2"cos"B/2"cos"C/2

In triangleABC,sin((B+C)/2) =

Statement:1 In triangleABC , if a lt b sinA , then the triangle is possible. And Statement:2 In triangleABC a/(sinA)= b/(sinB)