Home
Class 11
MATHS
If f(x) =x , x<0 and f(x)=1 , x = 0, an...

If `f(x) =x , x<0` and `f(x)=1 , x = 0,` and `f(x)=x^2,x>0` then `lim_(x->0) f(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =x , x 0 then lim_(x->0) f(x) is equal to

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to

If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) and f(1) gt 0 then lim_(x to 1) f(x) is equal to

If f(x)={xsin(1/x) ,\ x!=0, then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to (A) 0 (B) 4 (C) 2 (D) does not exist

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

If f(x)=x(-1)^[1/x] xle0 , then the value of lim_(xto0)f(x) is equal to