Home
Class 12
MATHS
In the Mean value theorem f(b)-f(a)=(b...

In the Mean value theorem
`f(b)-f(a)=(b-a)f'(c),` if a=4, b=9
and f(x)=`sqrtx`, then the value of c is

Promotional Banner

Similar Questions

Explore conceptually related problems

In the mean value theorem, f(b) - f(a) = (b-a) f(c ) , if a= 4, b = 9 and f(x) = sqrt(x) then the value of c is

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 and f(x)=x(x-1)(x-2) the value of c is

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0,b=(1)/(2) and f(x)=x(x-1)(x-2) the value of c is

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=sqrt(x) and a=4, b=9, find c.

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b), "if " a=(pi)/(6), b=(5pi)/(6) and f(x) =log(sinx) , then the value of c is -

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=Ax^(2)+Bx+c" in " a le x le b , find c.

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

In the mean value theorem f(b)-f(a)=(b-a)f'(c ), (a lt c lt b)," if " f(x)=x^(3)-3x-1 and a=-(11)/(7), b=(13)/(7) , find the value of c.