Home
Class 12
MATHS
The number of critical points of f(x)=ma...

The number of critical points of `f(x)=max{sinx,cosx},AAx in(-2pi,2pi),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=max{sinx,cosx}AA"x"inR then number of critical points of f(x) in (0,2pi) is

Find critical points of f(x) =max (sinx cosx) AA , X in (0, 2pi) .

Find critical points of f(x) =max (sinx cosx) AA , X in (0, 2pi) .

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

The number of stationary points of f(x) = cosx in [0,2pi] are

f(x)=max(sin x,cos x),x varepsilon R. Then number of critical points varepsilon(-2 pi,2 pi) is/are (i) 5( ii) 7( iii) 9 (iv) none of these

Discuss the differentiability of f(x)= maximum {2sinx ,1-cosx} AAx in (0,pi)dot

Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,pi)dot

Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,pi)dot