Home
Class 12
MATHS
Vertices of a variable triangle are (5,1...

Vertices of a variable triangle are `(5,12),(13 costheta,13 sintheta)` and `(13 sintheta-13 costheta )`, Where `theta in R`. Locus of it's orthocentre is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Vertices of a variable triangle are (5,12),(13cos theta,13sin theta) and (13sin theta-13cos theta), Where theta in R. Locus of itt's orthocentre is:

Vertices of a variable triangle are A (3,4),B(5costheta, 5sintheta) and C (5sintheta,-5costheta) where theta is a parameter then, find the locus of its orthocentre.

Let A(5, 12), B(-13 costheta, 13 sin theta) and C(13 sin theta, -13 cos theta) are angular points of ABC where theta in R . The locus of orthocentre of DeltaABC is

Let A(5,12),B(-13cos theta,13sin theta) and -C(13sin theta,13cos theta) are angular points of ABC where theta in R. The locus of orthocentre of DeltaABC is

If sintheta+costheta=(7)/(5) , find sintheta.costheta .

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

If costheta-sintheta=1 , then theta

If sintheta=(5)/(13)" then "costheta=?

If sintheta+costheta=(17)/(13) , then sintheta.costheta .

If sintheta+costheta=(17)/(13) , then sintheta-costheta=?