Home
Class 12
MATHS
Prove that identities: |[-bc,b^2+bc,c^2...

Prove that identities: `|[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

|[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64 . then (ab+bc+ac) is

Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab, -ab]|=(ab+bc+ca)^2

Using the properties of determinants show that : |[[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]]|=(ab+bc+ca)^3

prove that, |{:(""-bc ,b^2+bc,c^2+bc),(a^2+ac," "-ac,c^2+ac),(a^2+ab,b^2+ab," "-ab):}|=(ab+bc+ca)^3

If the given vectors (-bc,b^2+bc,c^2+bc)(a^2+ac,-ac,c^2+ac) and (a^2+ab,b^2+ab,-ab) are coplanar, where none of a,b and c is zero then

If the given vectors (-bc,b^2+bc,c^2+bc)(a^2+ac,-ac,c^2+ac) and (a^2+ab,b^2+ab,-ab) are coplanar, where none of a,b and c is zero then

| [-bc, b ^ (2) + bc, c ^ (2) + bca ^ (2) + ac, -ac, c ^ (2) + aca ^ (2) + ab, b ^ (2) + ab, -ab (ab + bc + ac), is = 64. then

Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2