Similar Questions
Explore conceptually related problems
Recommended Questions
- With the usual notation npr=272. If r >1, then n+r=
Text Solution
|
- With the usual notation np(r)=272. If r>1 then n+r=
Text Solution
|
- यदि .^nPr= .^nP(r+1) और .^nCr = .^nC(r-1),n और r ज्ञात कीजिए ।
Text Solution
|
- প্রমাণ করো যে , . ^nPr=^(n-1)Pr+r*^(n-1)P(r-1)
Text Solution
|
- দেখাও যে . ^nPr=n*^(n-1)P(r-1)=(n-r+1)*^nP(r-1)
Text Solution
|
- Prove that .^(n-1) Pr+r .^(n-1) P(r-1) = .^nPr
Text Solution
|
- Prove that ^(n-1) Pr+r .^(n-1) P(r-1) = .^nPr
Text Solution
|
- If ""^nCr=^nPr,r!=1, then write the value of r.
Text Solution
|
- Prove that , ""^nPr = ""^((n-1))Pr + r. ""^(n-1)P((r-1))
Text Solution
|