Home
Class 12
MATHS
If a, b are non-zero vectors such that |...

If a, b are non-zero vectors such that `|a+b|=|a-2b|`, then
Statement-I Least value of `a*b+(4)/(|b|^(2)+2)` is `2sqrt(2)-1`.
Statement-II The expression `a*b+(4)/(|b|^(2)+2)` is least when magnitude of b is `sqrt(2tan((pi)/(8)))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are the non-zero roots of the equation x^(2) + ax + b = 0 , then the least value of the expression x^(2) + ax + b is

If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -ab sqrt(2) +b^(2)) is

If a,b and c are vectors with magnitudes 2,3 and 4 respectively then the least upper bound of |a - b|^(2) + |b - c|^(2 )+ |c-a|^(2) among the given values is

If a and b are positive numbers such that a gt b , then the minimum value of a sec theta- b tan theta (0 lt theta lt pi/2) is a) 1/sqrt(a^2-b^2) b) 1/sqrt(a^2+b^2) c) sqrt(a^2+b^2) d) sqrt(a^2-b^2)

Determine the value of (a^2+b^2)/(a^3+b^3) when a = 2 + sqrt3 and b = 2-sqrt3

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals