Home
Class 12
MATHS
x = cos theta, y = sin 5 theta implies (...

`x = cos theta, y = sin 5 theta implies (1- x ^(2)) (d^(2)y)/(dx ^(2)) -x (dy)/(dx) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos theta,y=sin5 theta then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x=cos theta and y=sin 5 theta , then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+25y=0

If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

If x=a cos theta+b sin theta,y=a sin theta-b cos theta then show that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

x=a cos theta+b sin theta and y=a sin theta-b cos theta show that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

If x=a cos theta+b sin theta and y=a sin theta-b cos theta, then prove that y^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+y=0

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x= cos theta , y= sin^3 theta , show that y ( d^2 y)/(d x^2 ) + (dy/dx)^2 = 3 sin^2 theta (5 cos^2 theta - 1)