Home
Class 6
MATHS
" If "x=2,y=-3,z=4" ,evalute the followi...

`" If "x=2,y=-3,z=4" ,evalute the following ",(x)/(y)+(x^(2))/(y^(2))+(y)/(z)-(x)/(z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}|=(y-z)(z-x)(x-y)(x+y+z)

"The value of "(x^(2))/((x-y)(x-z))+(y^(2))/((y-z)(y-x))+(z^(2))/((z-x)(z-y))" is : "

Without expanding, prove the following |(x,y,z),(x^2,y^2,z^2),(x^3,y^3,z^3)|=xyz(x-y)(y-z)(z-x)

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

Prove the following identities : |{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x) .

If x, y, z are all distinct and |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3))|=0 then value of x y z is :

Prove that 4x^2(y-z)+y^2(2x-z)+z^2(2x+y)-4xyz = (2x+y)(y-z)(2x-z)

If x+y+z=0 , then [(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equals

Solve that |(y+z,x,x^(2)),(z+x,y,y^(2)),(x+y,z,z^(2))|=(x+y+z)(x-y)(y-z)(z-x)