Home
Class 12
MATHS
" If "f:X rarr Y,f(x)=sin x+cos x+2sqrt(...

" If "f:X rarr Y,f(x)=sin x+cos x+2sqrt(2)" is invertible,then "X rarr Y" is "/" are "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: X rarrY , f(x)= sin x + cos x + 2 sqrt(2) be invertible. Then which X rarr Y is not possible ?

Let f:X rarr yf(x)=s in x+cos x+2sqrt(2) be invertible.Then which X rarr Y is not possible? [(pi)/(4),(5 pi)/(4)]rarr[sqrt(2,3)sqrt(2)][-(3 pi)/(4),(pi)/(4)]rarr[sqrt(2,3)sqrt(2)][-(3 pi)/(4),(3 pi)/(4)]rarr[sqrt(2,3)sqrt(2)] none of these

If f:R rarr R,f(x)=sin^(2)x+cos^(2)x, then fis

If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible function, then the correct statement can be

If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible function, then the correct statement can be

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is

f(x)=sin^(2)x+cos ec^(2)x rArr

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain