Home
Class 12
MATHS
Mean Value Theorem (f(b )-f(a))/(b-a)=...

Mean Value Theorem `(f(b )-f(a))/(b-a)=f'(c )` में c का मान निकाले यदि `f(x)=x^2-x`, a=0,b=2

Promotional Banner

Similar Questions

Explore conceptually related problems

In the mean value theorem f(b)-f(a)=(b-a)f'(c ), (a lt c lt b)," if " f(x)=x^(3)-3x-1 and a=-(11)/(7), b=(13)/(7) , find the value of c.

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0 , b =1/2 and f(x)=x(x-1)(x-2) the value of c is

Using Largrange's mean value theorem f(b)-f(a)=(b-a)f'(c ) find the value of c, given f(x)=x(x-1)(x-2), a=0 and b=(1)/(2) .

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=sqrt(x) and a=4, b=9, find c.

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0,b=(1)/(2) and f(x)=x(x-1)(x-2) the value of c is

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=Ax^(2)+Bx+c" in " a le x le b , find c.

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b), "if " a=(pi)/(6), b=(5pi)/(6) and f(x) =log(sinx) , then the value of c is -