Home
Class 12
MATHS
The maximum value of f(x)=(logx)/(x)(x n...

The maximum value of `f(x)=(logx)/(x)(x ne 0, x ne1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x) =(log x)/(x) (x ne 0, x ne 1) is

Local maximum value of f(x)=x+(1)/(x)x ne 0 is ………..

Show that a local minimum value of f(x) = x + 1/x , x ne 0 is greater than a local maximum value.

Show that f(x)=(log x)/(x), x ne 0 is maximum at x = e .

The function f(x)=(1-cos x)/(x^(2))" for "x ne 0, f(0)=1" at x=0 is"

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is