Home
Class 12
MATHS
int(dx)/(a^(2)+x^(2))=(1)/(a)tan^(-1)(x)...

int(dx)/(a^(2)+x^(2))=(1)/(a)tan^(-1)(x)/(a)+c

Promotional Banner

Similar Questions

Explore conceptually related problems

(3) int(dx)/(x^(2)+a^(2))=(1)/(a)tan^(-1)(x/a)+C

int(1)/(x^(2)+a^(2))dx=(1)/(a)tan^(-1)((x)/(a))+c

Assertion (A) : int(dx)/(x^(2) + 2x + 3) = (1)/(sqrt(2)) tan^(-1)((x+1)/(sqrt(2))) + c Reason (R) : int(dx)/(x^(2) + a^(2)) = (1)/(a) tan^(-1)((x)/(a)) + c

(i) int(dx)/(sqrt(a^(2)-x^(2)))=(1)/(a)sin^(-1)((x)/(a))+c (ii) int(dx)/(a^(2)+x^(2))=tan^(-1)((x)/(a))+c (iii) int(x+1)/(x^(2)+2x+1)dx=(1)/(2)log|(x^(2)+2x+1)| (iv) int(dx)/(x(x-1))dx=log|(x-1)/(x)|+c State which pair of the statement given above is true.

If int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^(2)){(x)/(x^(2)+a^(2))+(1)/(a) tan^(-1). (x)/(a)}+C . Then the value of k, is

If int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^(2)){(x)/(x^(2)+a^(2))+(1)/(a) tan^(-1). (x)/(a)}+C . Then the value of k, is

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......