Home
Class 12
PHYSICS
A disc with moment of inertial I is rota...

A disc with moment of inertial I is rotating with some angular speed. Second disc is initially at rest. Now second disc with moment of inertia 3I is placed on first disc and starts rotating. Find loss of kinetic energy in fraction

Promotional Banner

Similar Questions

Explore conceptually related problems

A disc of moment of inertia I_(1) is rotating freely with angular speed omega_(1) when another non-rotating disc of moment of inertia I_(2) is dropped on it. The two discs then rotate as one unit. Find the final angular speed.

A disc with moment of inertia I_(1) , is rotating with an angular velocity omega_(1) about a fixed axis. Another coaxial disc with moment of inertia I_(2) , which is at rest is gently placed on the first disc along the axis. Due to friction discs slips against each other and after some time both disc start rotating with a common angular velocity. Find this common angular velocity.

A disc of moment of inertia la is rotating in a horizontal plane about its symmetry axis with constant angular speed co. Another discinitially at rest of moment of inertia I, is dropped coaxially on to the rotating disc. Then, both the discs rotate with same constant angular speed The loss of kinetic energy due to friction in this process is,

A disc is rotating with angular speed omega_(1) . The combined moment of inertia of the disc and its axle is I_(1) . A second disc of moment of inertia I_(2) is dropped on to the first and ends up rotating with it. Find the angular velocity of the combination if the original angular velocity of the upper disc was (a) zero (b) omega_(2) in the same direction as omega_(1) and (c) omega_(2) in a direction opposite to omega_(1) .

A disc is rotating with angular speed omega_(1) . The combined moment of inertia of the disc and its axle is I_(1) . A second disc of moment of inertia I_(2) is dropped on to the first and ends up rotating with it. Find the angular velocity of the combination if the original angular velocity of the upper disc was (a) zero (b) omega_(2) in the same direction as omega_(1) and (c) omega_(2) in a direction opposite to omega_(1) .

A circular disc of moment of inertia I_(1) is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed omega_(1) . Another disc of moment of inertia I_(2) is placed coaxially on the rotating disc. Initially the second disc has zero angular speed. Eventually both the discs rotate with a constant angular speed omega_(2) . The energy lost by the initially rotating disc to friction is ............

A uniform circular disc of radius R, lying on a frictionless horizontal plane is rotating with an angular velocity omega about is its own axis. Another identical circular disc is gently placed on the top of the first disc coaxially. The loss in rotational kinetic energy due to friction between the two discs, as they acquire common angular velocity is (I is moment of inertia of the disc)