Home
Class 12
MATHS
" सिद्ध करें कि- "|vec a timesvec b|^(2)...

" सिद्ध करें कि- "|vec a timesvec b|^(2)=|vec a|^(2)|vec b|^(2)-|vec a*vec b|^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a + vec b|^(2) = |vec a|^(2) +|vec b|^(2) , then

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)

vec|a|=2 vec|b|=2 |vec a.vec b|=4 |vec a-vec b|

For any two vectors vec a and vec b , prove that: | vec a+ vec b|^2=| vec a|^2+| vec b|^2+2 vec adot vec b , | vec a- vec b|^2=| vec a|^2+| vec b|^2-2 vec adot vec b , | vec a+ vec b|^2+| vec a- vec b|^2=2(| vec a|^2+| vec b|^2) and | vec a+ vec b|^2=| vec a- vec b|^2 iff vec a_|_ vec bdot Interpret the result geometrically.

Prove that |vec(a)xx vec(b)|^(2)=|vec(a)|^(2)|vec(b)|^(2)-(vec(a).vec(b))^(2) =|(vec(a).vec(a),vec(a).vec(b)),(vec(a).vec(b),vec(b).vec(b))| .

If vec alpha and vec beta be two unit vector.The maximum | vec a + vec b | ^ (2) - | vec a-vec b | ^ (2) value of (| vec a + vec b | ^ (2) - | vec a-vec b | ^ (2)) / (| vec a + vec b | ^ (2) + | vec a-vec b | ^ (2)) is equal to

Prove that |vec a + vec b| = sqrt (|vec a|^2 + |vec b|^2 + 2 vec a * vec b) .

(vec A*vec B)+|vec A+vec B|^(2)=

The value of (axxb)^2 is | vec a|^2+| vec b|^2-( vec adot vec b)^2 b. | vec a|^2| vec b|^2-( vec adot vec b)^2 c. | vec a|^2+| vec b|^2-2( vec adot vec b)^2 d. | vec a|^2+| vec b|^2- vec adot vec b

Let vec a, vec b, vec b, vec b are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c = 3 and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then