Home
Class 12
MATHS
" Q51.The differential coefficient of "t...

" Q51.The differential coefficient of "tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

d/(dx){Cot^(-1)""(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}

Differentiate tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) w.r.t. x .

Differentiate (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))

Differentiate tan^(-1) frac (sqrt(1+x^2) + sqrt(1-x^2))(sqrt(1+x^2) - sqrt(1-x^2))