Home
Class 12
MATHS
" 3.Prove that "cot A+cot B+cot C=(a^(2)...

" 3.Prove that "cot A+cot B+cot C=(a^(2)+b^(2)+c^(2))/(4A)

Promotional Banner

Similar Questions

Explore conceptually related problems

4Delta(cot A+cot B+cot C)=a^(2)+b^(2)+c^(2)

With usual notations,prove that in a triangle ABC cot A+cot B+cot C=(a^(2)+b^(2)+c^(2))/(4Delta)

In DeltaABC , prove that: cot\ A/2+cot\ B/2+cot\ C/2=((a+b+c)^(2))/(4Delta)

In DeltaABC , prove that: cot\ A/2+cot\ B/2+cot\ C/2=((a+b+c)^(2))/(4Delta)

If a^(2),b^(2),c^(2) are in A.P.prove that cot A,cot B,cot C are in A.P.

In Delta ABC Prove that a cot A + b cot B + c cot C = 2 ( R + r)

If A+B+C=pi , prove that : cot( A/2)+ cot(B/2) + cot( C/2) = cot( A/2) cot(B/2) cot(C/2)

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)

If A+B+C=pi , prove that : cot (A/2)+ cot(B/2) + cot(C/2) = cot(A/2) cot (B/2) cot (C/2)

If a^(2),b^(2),c^(2) are in A.P.then prove that cot A,cot B,cot C are in A.P.