Home
Class 12
MATHS
If vecOA=veca,vecOB=vecb,vecOC=2veca+3ve...

If `vecOA=veca,vecOB=vecb,vecOC=2veca+3vecb,vecOD=veca-2vecb`, the length of `vecOA` is three times the length of `vecOB` and `vecOA` is perpendicular to `vecDB`, then `(vecBDxxvecAC).(vecODxxvecOC)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA+vecB=vecR and 2vecA+vecB is perpendicular to vecB then

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

If veca and vecb are two vectors such that |veca+vecb|=|veca| , then prove that the vector 2veca+vecb is perpendicular to vector vecb .

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.

If veca and vecb are two vectors such that |veca+vecb|=|veca| then prove that vector 2veca + vecb is perpendicular to vector vecb .