Home
Class 11
MATHS
If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx)...

If `y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]`, `(0 lt x lt pi/2)`, then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=

" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=

Tan^(-1)[(sqrt(1+sinx)-sqrt(1-sinx))/(sqrt(1+sinx)+sqrt(1-sinx))]=

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , where 0lt xlt(pi)/(2), then (dy)/(dx) is equal to

If y = tan^(-1) [(sqrt(1+sinx) + sqrt(1-sinx ))/(sqrt(1+sinx)-sqrt(1-sin x))], 0 lt xlt pi/2 then dy/dx =

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)