Home
Class 11
MATHS
" If the vectors "abar(i)+bar(j)+bar(k),...

" If the vectors "abar(i)+bar(j)+bar(k),bar(i)+bbar(j)+bar(k),bar(i)+bar(j)+cbar(k)(a!=b!=c!=1)" are coplanar,then "(1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

Find t, for which the vectors 2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k) are coplanar.

Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

The vectors lambda bar(i)+bar(j)+2bar(k),bar(i)+lambda bar(j)-bar(k) and 2bar(i)-bar(j)+lambda bar(k) are coplanar, if …………

Compute [bar(i) - bar(j). bar(j) - bar(k). bar(k) -bar(i)] .

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

Let bar(a)=bar(i)+bar(j), bar(b)=bar(j)+bar(k) and bar(c)=alphabar(a)+betabar(b) . If the vectors bar(i)-2bar(j)+bar(k), 3bar(i)+2bar(j)-bar(k) and bar(c) are coplanar then alpha/beta equals

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

If the vectors bar(a)=bar(i)+bar(j)+bar(k), bar(b)=4bar(i)+3bar(j)+4bar(k), and bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent and abs(bar(c))=sqrt(3) then show that alpha=pm1, beta=1