Home
Class 11
MATHS
sum(m=1)^(n)Tan^(-1)((2m)/(m^(4)+m^(2)+2...

sum_(m=1)^(n)Tan^(-1)((2m)/(m^(4)+m^(2)+2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(m=1)^(oo)tan^(-1)((2m)/(m^(4)+m^(2)+2)) is

sum_(m=1)^(oo)Tan^(-1) ((2m)/(m^(4)+m^(2)+2))=

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

The value of sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2)) is

The value of sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2)) is

sum_(m-1)^ntan^(-1)((2m)/(m^4+m^2+2)) is equal to (a) tan^(-1)((n^2+n)/(n^2+n+2)) (b) tan^(-1)((n^2-n)/(n^2-n+2)) (c) tan^(-1)((n^2+n+2)/(n^2+n)) (d) none of these

If sum_(i=1)^(10)tan^(-1)((3)/(9r^(2)+3r-1))=cot^(-1)((m)/(n)) (where m and n are coprime) then the value of (2m+n)/(8) is