Home
Class 12
MATHS
Let underset(xto1)(lim)(x^(4)-1)/(x-1)=u...

Let `underset(xto1)(lim)(x^(4)-1)/(x-1)=underset(ktok)(lim)(x^(3)-k^(3))/(x^(2)-k^(2))` then value of k is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

Evaluate: underset(xto1)(lim)1/x^(1-x)

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

underset(x to -oo)lim(3|x|-x)/(|x|-2x)-underset(xto0)lim(log(1+x^(3)))/(sin^(3)x)=

Evaluate underset(xto1)lim(a^(x-1)-1)/(sinpix).

Evaluate underset(xto1)lim(a^(x-1)-1)/(sinpix).