Home
Class 10
MATHS
Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^...

Prove: `(1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: (1+tan^(2)A)+(1+(1)/(tan^(2)A))=(1)/(sin^(2)A-sin^(4)A)

Prove that (1 + 1/(tan^2A)) (1 + 1/(cot^2A)) = 1/(sin^2 A - sin^4 A )

Prove that (1+(1)/(tan^2 A)) (1+(1)/(cot^2A)) = (1)/(sin^2 A- sin^4 A)

Prove that : (1+ (1)/(tan^2 A)) (1 +(1)/(cot^2 A)) = (1)/(sin^2 A - sin^4 A)

prove that: (1+(1)/(tan^(2)A))(1+(1)/(cot^(2)A))=(1)/(sin^(2)A-sin^(4)A)

Prove: sin^(2)A+(1)/(1+tan^(2)A)=1

Prove the following identities: (1+tan^2A)+(1+frac(1)(tan^2A))=frac(1)(Sin^2A-Sin^4A)

Prove that (1+(1)/(tan^(2)A))(1+(1)/(cot^(2)A))=(1)/((sin^(2)A- sin^(4)A)).

Prove that : (1 + tan^(2) A) + (1 + (1)/ (tan^(2) A)) = (1)/ (sin^(2) A - sin^(4) A)

Prove that (1+tan^2 O/) + (1+1/tan^2 O/) = 1/(sin^2 O/ - sin^4 O/)