Home
Class 12
MATHS
The minimum value of x\ (log)e x is equa...

The minimum value of `x\ (log)_e x` is equal to `e` (b) `1//e` (c) `-1//e` (d) `2e` (e) ` e`

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

The minimum value of (x)/((log)_(e)x) is e(b)1/e(c)1(d) none of these

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^(2) - 2x + 1) sin^(2) x) is a)e b) 1//e c)1 d)0

The value of int_((1)/(e ))^(e )|log x|dx is equal to -

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these