Home
Class 11
MATHS
If b >1,sint >0,cost >0a n d(log)b(sint)...

If `b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost)` is equal to `1/2(log)_b(a-b^(2x))` (b) `2log(1-b^(x/2))` `(log)_bsqrt(1-b^(2x))` (d) `sqrt(1-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to (a) 1/2(log)_b(1-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If bgt1, sintgt0,costgt0andlog_b(sint)=x," then "log_b(cost) is equal to

If bgt1, sintgt0,costgt0andlog_b(sint)=x," then "log_b(cost) is equal to

If b lt 1. sin t lt0.cos t lt 0 and log_(b) (sin t)=x, then log_(b) (cost) is equal to

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

log_(x)((a+b)/(2))=(1)/(2)(log a+log_(8)b)