Home
Class 10
MATHS
In a square ABCD, show that AC^(2) = 2AB...

In a square ABCD, show that `AC^(2) = 2AB^(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a rhombus ABCD, prove that AC^(2) + BD^(2) = 4AB^(2)

In a rhombus ABCD, prove that AC^(2) + BD^(2) = 4AB^(2)

If ABCD is a square, then show that AC^2=2AB^2

In a quadrilateral ABCD prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)+4PQ^(2) where P and Q are middle points of diagonals AC and BD.

In rhombus ABCD,show that 4AB^(2)=AC^(2)+BD^(2)

For a rhambus ABCD , prove that 4 AB ^(2) = AC^(2) + BD^(2)

In a rectangle ABCD, prove that : AC^(2)+BD^(2)=AB^(2)+BC^(2)+CD^(2)+DA^(2) .

In a quadrilateral ABCD ,prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)+4PQ^(2) where P and Q are middle points of diagonals AC and BD.

In a quadrilateral ABCD, show that (AB+BC+CD+DA)lt2(BD+AC).

In a quadrilateral ABCD, show that (AB+BC+CD+DA)gt(AC+BD) .